2米资源网

VIP
七月在线机器学习工程师班(第八期)

【5936】-七月在线机器学习工程师班(第八期)

  • 本站均为资源介绍,仅限用于学习和研究,不得将上述内容用于商业或者非法用途,
  • 否则一切后果请用户自负。您必须在下载后的24个小时之内,从您的电脑中彻底删除
  • 如果喜欢该资源请支持正版。如发现本站有侵权违法内容,请联系后查实将立刻删除。
  • 资源简介:七月在线机器学习工程师班(第八期)
  • 详细描述

    七月在线机器学习工程师班(第八期)


    夯实数学基础
    第1课(上)微积分
    知识点1: 微积分的基本概念
    第1课(下)概率论
    知识点1: 概率论简介
    第2课(上) 线性代数
    知识点1: 线性代数基础
    第2课(下) 凸优化
    知识点1: 凸优化简介

    掌握基本模型 打开ML大门
    第3课 回归问题与应用
    知识点1: 线性回归、logistic回归、梯度下降
    实战项目: 分布拟合与回归、用LR分类与概率预测
    实战项目: 实际工程海量数据下的logistic回归使用,包括样本处理、特征处理、算法调优和背后的原理
    第4课 决策树、随机森林、GBDT
    知识点1: 决策树 随机森林、GBDT
    实战项目: 使用随机森林进行数据分类
    第5课 SVM
     
    知识点1: 线性可分支持向量机、线性支持向量机、非线性支持向量机、SMO
    实战项目: 使用SVM进行数据分类
    第6课 最大熵与EM算法(上)
    知识点1: 熵、相对熵、信息增益、最大熵模型、IIS、GMM

    重中之重 特征工程
    第7课 机器学习中的特征工程处理
    知识点1: 数据清洗、异常点处理、特征抽取、选择与组合策略
    实战项目: 特征处理与特征选择工具与模板
    第8课 多算法组合与模型最优化
    知识点1: 机器学习问题场景分析、算法选择、模型构建、模型性能分析与优化策略
    实战项目: 构建模型组合策略工具与模板

    工业实战 在实战中掌握一切
    第9课 sklearn与机器学习实战
    知识点1: sklearn板块介绍,组装与建模流程搭建
    实战项目: 经典Titanic案例,商品销量预测案例等
    第10课 高级工具xgboost/lightGBM与建模实战
    知识点1: xgboost与lightGBM使用方法与高级功能
    实战项目: Titanic与商品销量预测进阶,Kaggle案例实战
    第11课 用户画像与推荐系统
    知识点1: 基于内容的推荐,协同过滤,隐语义模型,learning to rank,推荐系统评估
    实战项目: 实际打分数据上的推荐系统构建
    第12课 聚类
    知识点1: K-means/K-Medoid/层次聚类
    实战项目: K-means代码实现和实际应用分析
    第13课 聚类与推荐系统实战
    实战项目: 用户聚类结合推荐算法,构建推荐系统完整案例(送完整可运行的代码)

    高阶知识 深入机器学习
    第14课 贝叶斯网络
    知识点1: 朴素贝叶斯、有向分离、马尔科夫模型
    第15课 隐马尔科夫模型HMM
    知识点1: 概率计算问题、参数学习问题、状态预测问题
    实战项目: 使用HMM进行中文分词
    第16课 主题模型
    知识点1: pLSA、共轭先验分布、LDA
    实战项目: 使用LDA进行文档分类

    迈入深度学习 打开DL大门
    第17课 神经网络初步
    知识点1: 全连接神经网络、反向传播算法与权重优化,训练注意点
    实战项目: 构建神经网络解决非线性切分问题
    第18课 卷积神经网络与计算机视觉
    知识点1: 卷积神经网络结构分析、过拟合与随机失活,卷积神经网络理解
    实战项目: 工业界常用网络结构与搭建
    第19课 循环神经网络与自然语言处理
    知识点1: 循环神经网络、长时依赖问题与长短时记忆网络,BPTT算法
    实战项目: 利用循环神经网络生成文本、学汪峰写歌词
    第20课 深度学习实践
    知识点1: Caffe应用要点、TensorFlow/Keras简介
    实战项目: 用Caffe在自己的数据集上完成分类,用Tensorflow构建RNN模型分类预测

     
    七月在线机器学习工程师班(第八期)
    百度网盘分享地址: 链接: https://pan.baidu.com/s/1l89PqZkuGKy2l6p1JBi6sQ 提取码:
    2米资源网