2米资源网

VIP
深度之眼-吴恩达《机器学习》训练营

【8058】-深度之眼-吴恩达《机器学习》训练营

  • 本站均为资源介绍,仅限用于学习和研究,不得将上述内容用于商业或者非法用途,
  • 否则一切后果请用户自负。您必须在下载后的24个小时之内,从您的电脑中彻底删除
  • 如果喜欢该资源请支持正版。如发现本站有侵权违法内容,请联系后查实将立刻删除。
  • 资源简介:深度之眼-吴恩达《机器学习》训练营
  • 详细描述

    吴恩达机器学习coursera


    教程和笔记
    Deeplearning深度学习笔记v5.61.pdf
    机器学习个人笔记完整版v4.21.pdf
    教材
    deeplearningbook.pdf
    机器学习周志华.pdf
    统计学习方法-李航.pdf
    PatternRecognitionAndMachineLearning.pdf
    dbook_cn_v0.5-beta.pdf
    pdf

    视频
    11-1-Welcome (7 min). mkv
    -1-Welcome (7 min). srt
    1-2-What is Machine Learning_(7 min). mkv
    11-2-What is Machine Learning_(7 min). srt
    11-3-Supervised Learning (12 min). mkv
    1-3-Supervised Learning (12 min). srt
    -4-Unsupervised Learning (14 min). mkv
    1-4-Unsupervised Learning (14 min). srt
    10 -1-Deciding What to Try Next (6 min). mkv
    10-1-Deciding What to Try Next (6 min). srt
    1 10 -2-Evaluating a Hypothesis (8 min). mkv
    10-2-Evaluating a Hypothesis (8 min). srt
    1 10-3-Model Selection and Train_Validation_Test Sets (12 min). mky
    10-3-Model Selection and Train_validation_Test Sets (12 min). srt
    1 10-4-Diagnosing Bias vs. Variance (8 min). mkv
    10-4-Diagnosing Bias vs. Variance (8 min). srt
    110-5-Regularization and Bias_Variance (11 min). mkv
    1 10-5-Regularization and Bias_Variance (11 min). srt
    10-6-Learning Curves (12 min). mkv
    10-6-Learning Curves (12 min). srt
    10-7-Deciding What to Do Next Revisited (7 min). mkv
    10-7-Deciding What to Do Next Revisited (7 min). srt
    111-1-Prioritizing What to Work On (10 min). mkv
    Prioritizing What to Work On (10 min). st
    1 11-2-Error Analysis (13 min). mkv
    11 -2 -Error Analysis (13 min). srt
    111-3-Error Metrics for Skewed Classes (12 min). mkv
    111-3-Error Metrics for Skewed Classes (12 min). srt
    111-4-Trading Off Precision and Recall (14 min). mkv
    1 11-4-Trading Off Precision and Recall (14 min). srt
    11-5-Data For Machine Learning (11 min). mkv
    1 11-5-Data For Machine Learning (11 min). srt
    1 12-1-Optimization Objective (15 min). mkv
    1 12-1-Optimization Objective (15 min). srt
    1 12-2-Large Margin Intuition (11 min). mku
    12-2-Large Margin Intuition (11 min). srt
    1 12-3-Mathematics Behind Large Margin Classification (Optional) (20 min). mkv
    12-3-Mathematics Behind Large Margin Classification (Optional) (20 min). srt
    12-4-Kemels I (16 min). mkv
    12-4-Kemels I (16 min). srt
    12-5-Kemels II (16 min). mkv
    12 -5-Kermels II (16 min). st
    12-6-Using An SVM (21 min). mk
    12-6-Using An SVM (21 min). srt
    13-1-Unsupervised Learning_Introduction (3 min). mkv
    13-1-Unsupervised Learning_Introduction (3 min). srt
    13-2-K-Means Algorithm (13 min). mky
    13-2-K-Means Algorithm (13 min). srt
    13-3-Optimization Objective (7 min)(1). mkv
    13-3-Optimization Objective (7 min)(1). srt
    13-3-Optimization Objective (7 min). mkv
    13-3-Optimization Objective (7 min). srt
    13-4-Random Initialization (8 min). mky
    13-4-Random Initialization (8 min). srt
    13-5-Choosing the Number of Clusters (8 min). mkv
    13-5-Choosing the Number of Clusters (8 min). srt
    14-1-Motivation L_Data Compression (10 min). mkv
    14-1-Motivation I_Data Compression (10 min). srt
    14-2-Motivation IL Visualization (6 min). mkv
    14-2-Motivation I Visualization (6 min). srt
    14-3-Principal Component Analysis Problem Formulation (9 min). mkv
    14-3-Principal Component Analysis Problem Formulation (9 min). srt
    14-4-Principal Component Analysis Algorithm (15 min). mkv
    14-4-Principal Component Analysis Algorithm (15 min). srt
    14-5-Choosing the Number of Principal Components (11 min). mkv
    14-5-Choosing the Number of Principal Components (11 min). srt
    14-6-Reconstruction from Compressed Representation (4 min). mkv
    14-6-Reconstruction from Compressed Representation (4 min). srt
    14-7-Advice for Applying PCA (13 min). mkv
    14-7-Advice for Applying PCA (13 min). srt
    15-1-Problem Motivation (8 min). mkv
    15-1-Problem Motivation (8 min). srt
    15-2-Gaussian Distribution (10 min). mkv
    15-2-Gaussian Distribution (10 min). srt
    115-3-Algorithm (12 min). mkv
    15-3-Algorithm (12 min). srt.
    15-4-Developing and Evaluating an Anomaly Detection System (13 min). mkv
    15-4-Developing and Evaluating an Anomaly Detection System (13 min). srt
    1 15-5-Anomaly Detection vs. Supervised Learning (8 min). mkv
    15-5-Anomaly Detection vs. Supervised Learning (8 min). srt
    115-6-Choosing What Features to Use (12 min). mkv
    15-6-Choosing What Features to Use (12 min). srt
    1 15-7-Multivariate Gaussian Distribution (Optional) (14 min). mk
    15-7-Multivariate Gaussian Distribution (Optional) (14 min). st
    15-8-Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min). mkv
    15-8-Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min). srt
    16-1-Problem Formulation (8 min). mkv
    16-1-Problem Formulation (8 min). srt
    16-2-Content Based Recommendations (15 min). mku
    16-2-Content Based Recommendations (15 min). srt
    16 -3-Collaborative Filtering (10 min). mkv
    16-3-Collaborative Filtering (10 min). srt
    16-4-Collaborative Filtering Algorithm (9 min). mkv
    16-4-Collaborative Filtering Algorithm (9 min). srt
    16-5-Vectorization_Low Rank Matrix Factorization (8 min). mkv
    16-5-Vectorization_Low Rank Matrix Factorization (8 min). srt
    16-6-Implementational Detail_Mean Normalization (9 min). mk
    16-6-Implementational Detail_Mean Normalization (9 min). srt
    17-1-Learning With Large Datasets (6 min). mk
    17-1-Learning With Large Datasets (6 min). srt
    17-2-Stochastic Gradient Descent (13 min). mkv
    17-2-Stochastic Gradient Descent (13 min). srt
    17-3-Mini-Batch Gradient Descent (6 min). mku
    17-3-Mini-Batch Gradient Descent (6 min). srt
    17-4-Stochastic Gradient Descent Convergence (12 min). mkv
    17-4-Stochastic Gradient Descent Convergence (12 min). srt
    1 17-5-Online Learning (13 min). mkv
    17-5-Online Learning (13 min). srt
    17-6-Map Reduce and Data Parallelism (14 min). mkv
    17-6-Map Reduce and Data Parallelism (14 min). srt
    18-1-Problem Description and Pipeline (7 min). mkv
    18-1-Problem Description and Pipeline (7 min). srt
    18-2-Sliding Windows (15 min). mkv
    18-2-Sliding Windows (15 min). srt
    18-3-Getting Lots of Data and Artificial Data (16 min). mkv
    18-3-Getting Lots of Data and Artificial Data (16 min). srt
    18-4-Ciling Analysis_What Part of the Pipeline to Work on Next (14 min). mkv
    18-4-Ceiling Analysis_What Part of the Pipeline to Work on Next (14 min). srt
    19-1-Summary and Thank You (5 min). mky
    19-1-Summary and Thank You (5 min). srt
    2-1-Model Representation (8 min). mkv
    2-1-Model Representation (8 min). srt
    2-2-Cost Function (8 min). mkv
    2-2-Cost Function (8 min). srt
    2-3-Cost Function -Intuition I (11 min). mkv
    2-3-Cost Function -Intuition I (11 min). srt
    2-4-Cost Function -Intuition II (9 min). mkv
    2-4-Cost Function -Intuition Il (9 min). srt
    2-5-Gradient Descent (11 min). mkv
    2-5-Gradient Descent (11 min). srt
    2-6-Gradient Descent Intuition (12 min). mkv
    2-6-Gradient Descent Intuition (12 min). srt
    2-7-Gradient Descent For Linear Regression (10 min). srt
    2-7-GradientDescentForLinearRegression (6 min). mkv
    2-8-What 's Next (6 min). mkv
    2-8-What_'s Next (6 min). srt
    3-1-Matrices and Vectors (9 min). mky
    3-1-Matrices and Vectors (9 min). srt
    3-2-Addition and Scalar Multiplication (7 min). mkv
    3-2-Addition and Scalar Multiplication (7 min). srt
    -3-Matrix Vector Multiplication (14 min). mkv
    3-3-Matrix Vector Multiplication (14 min). srt
    3-4-Matrix Matrix Multiplication (11 min). mkv
    3-4-Matrix Matrix Multiplication (11 min). srt
    3-5-Matrix Multiplication Properties (9 min). mkv
    3-5-Matrix Multiplication Properties (9 min). srt
    3-6-Inverse and Transpose (11 min). mkv
    3-6-Inverse and Transpose (11 min). srt
    4-1-Multiple Features (8 min). mkv
    4-1-Multiple Features (8 min). srt
    4-2-Gradient Descent for Multiple Variables (5 min). mkv
    4-2-Gradient Descent for Multiple Variables (5 min). srt
    4-3-Gradient Descent in Practice I-Feature Scaling (9 min). mkv
    4-3-Gradient Descent in Practice I-Feature Scaling (9 min). srt
    4-4-Gradient Descent in Practice II -Learning Rate (9 min). mkv
    4-4-Gradient Descent in Practice II -Learning Rate (9 min). srt
    4-5-Features and Polynomial Regression (8 min). mkv
    4-5-Features and Polynomial Regression (8 min). srt
    4-6-Normal Equation (16 min). mky
    4-6-Normal Equation (16 min). srt
    4-7-Normal Equation Noninvertibility (Optional) (6 min). mkv
    4-7-Normal Equation Noninvertibility (Optional) (6 min). srt
    5-1-Basic Operations (14 min). mkv
    5-1-Basic Operations (14 min). srt
    5-2-Moving Data Around (16 min). mkv
    5-2 -Moving Data Around (16 min). srt
    5-3-Computing on Data (13 min). mkv
    5-3-Computing on Data (13 min). srt
    5-4-Plotting Data (10 min). mkv
    5-4-Plotting Data (10 min). srt
    5-5-Control Statements for, while, if statements (13 min). mkv
    5-5-Control Statements for, while, if statements (13 min). srt
    5-6-Vectorization (14 min). mkv
    5-6-Vectorization (14 min). srt
    5-7-Working on and Submitting Programming Exercises (4 min). mkv
    5-7-Working on and Submitting Programming Exercises (4 min). srt
    6-1-Classification (8 min). mku
    6-1-Classification (8 min). srt
    6-2-Hypothesis Representation (7 min). mkv
    6-2-Hypothesis Representation (7 min). srt
    6-3-Decision Boundary (15 min). mkv
    6-3-Decision Boundary (15 min). srt
    6-4-Cost Function (11 min). mkv
    6-4-Cost Function (11 min). srt
    6-5-Simplified Cost Function and Gradient Descent (10 min). mkv
    6-5-Simplified Cost Function and Gradient Descent (10 min). srt
    6-6-Advanced Optimization (14 min). mkv
    6-6-Advanced Optimization (14 min). srt
    6-7-Multiclass Classification_One-vs-all (6 min). mkv
    6-7-Multiclass Classification_One-vs-all (6 min). srt
    7-1-The Problem of Overfitting (10 min). mky
    7-1-The Problem of Overfitting (10 min). srt
    7-2-Cost Function (10 min). mkv
    7-2-Cost Function (10 min). srt
    7-3-Regularized Linear Regression (11 min). mkv
    7-3-Regularized Linear Regression (11 min). srt
    7-4-Regularized Logistic Regression (9 min). mkv
    7-4-Regularized Logistic Regression (9 min). srt
    8-1-Non-linear Hypotheses (10 min). mkv
    8-1-Non-linear Hypotheses (10 min). srt
    8-2-Neurons and the Brain (8 min). mkv
    8-2-Neurons and the Brain (8 min). srt
    18-3-Model Representation I (12 min). mkv
    8-3-Model Representation I (12 min). srt
    8-4-Model Representation II (12 min). mkv
    8-4-Model Representation II (12 min). srt
    8-5-Examples and Intuitions I (7 min). mkv
    8-5-Examples and Intuitions I (7 min). srt
    8-6-Examples and Intuitions II (10 min). mkv
    8-6-Examples and Intuitions II (10 min). srt
    8-7-Multiclass Classification (4 min). mkv
    8-7-Multiclass Classification (4 min). srt
    9-1-Cost Function (7 min). mkv
    9-1-Cost Function (7 min). srt
    9-2-Backpropagation Algorithm (12 min). mkv
    9-2-Backpropagation Algorithm (12 min). srt
    9-3-Backpropagation Intuition (13 min). mkv
    9-3-Backpropagation Intuition (13 min). srt
    19-4-Implementation Note_Unrolling Parameters (8 min). mkv
    9-4-Implementation Note_Unrolling Parameters (8 min). srt
    9-5-Gradient Checking (12 min). mkv
    9-5 -Gradient Checking (12 min). srt
    9-6-Random Initialization (7 min). mkv9-6-Random Initialization (7 min). srt
    9-7-Putting It Together (14 min). mkv
    9-7 -Putting It Together (14 min). srt
    9-8-Autonomous Driving (7 min). mkv
    9-8 -Autonomous Driving (7 min). srt

    深度之眼-吴恩达《机器学习》训练营
    百度网盘分享地址: 链接: https://pan.baidu.com/s/1Gbm91clZS_dUZ4oQPYs1aw 提取码: 365e
    2米资源网